首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   20篇
化学   138篇
力学   12篇
数学   22篇
物理学   53篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   7篇
  2019年   12篇
  2018年   5篇
  2017年   2篇
  2016年   11篇
  2015年   11篇
  2014年   5篇
  2013年   17篇
  2012年   23篇
  2011年   21篇
  2010年   10篇
  2009年   8篇
  2008年   11篇
  2007年   11篇
  2006年   11篇
  2005年   5篇
  2004年   11篇
  2003年   3篇
  2002年   8篇
  2001年   2篇
  2000年   6篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1992年   1篇
  1991年   3篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有225条查询结果,搜索用时 78 毫秒
91.
In this paper, the feasibility of using explosion synthesized diamond nanoparticles with an average particle size (APS) of 3–5 nm with a concentration of 1 % by weight for improving lubrication and friction in elastohydrodynamic lubrication (EHL) was investigated. Owing to the orders of magnitude increase in the viscosity of the lubricant in the EHL contact zone, diamond nanoparticles in the lubricant polish the surfaces at the nanoscale which decreases the composite roughness of contacting surfaces. The reduced composite roughness results in an increased film thickness ratio which yields lower friction. In the numerical analysis, governing equations of lubricant flow in the full elastohydrodynamic lubrication were solved, and the shear stress distribution over the fluid film was calculated. Using an abrasion model and the shear stress distribution profile, the material removal by the nanofluid containing nanoparticles and the resultant surface roughness were determined. The numerical analysis showed that in full EHL regime, the nanolubricant can reduce the composite roughness of moving surfaces. Experimental results from prior studies which exhibited surface polishing by such nanolubricants in boundary, mixed, and full elastohydrodynamic lubrication were used for comparison to the numerical model.  相似文献   
92.
93.
Vestibular schwannoma is the most common benign neoplasm of the cerebellopontine angle. Its first symptoms include hearing loss, tinnitus, and vestibular symptoms, followed by cerebellar and brainstem symptoms, along with palsy of the adjacent cranial nerves. However, the clinical picture has unpredictable dynamics and currently, there are no reliable predictors of tumor behavior. Hence, it is desirable to have a fast routine method for analysis of vestibular schwannoma tissues at the molecular level. The major objective of this study was to verify whether a technique using in-sample specific protein digestion with trypsin would have the potential to provide a proteomic characterization of these pathological tissues. The achieved results showed that the use of this approach with subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of released peptides allowed a fast identification of a considerable number of proteins in two differential parts of vestibular schwannoma tissue as well as in tissues of control healthy samples. Furthermore, mathematical analysis of MS data was able to discriminate between pathological vestibular schwannoma tissues and healthy tissues. Thus, in-sample protein digestion combined with LC-MS/MS separation and identification of released specific peptides followed by mathematical analysis appears to have the potential for routine characterization of vestibular schwannomas at the molecular level. Data are available via ProteomeXchange with identifier PXD045261.  相似文献   
94.
Journal of Solid State Electrochemistry - Nanocrystalline Na2Ti3O7 material is prepared by a newly developed sol-gel procedure. The sol-gel made Na2Ti3O7 calcined at 500 °C possesses...  相似文献   
95.
A robust finite volume method for the solution of high-speed compressible flows in multi-material domains involving arbitrary equations of state and large density jumps is presented. The global domain of interest can include a moving or deformable subdomain that furthermore may undergo topological changes due to, for example, crack propagation. The key components of the proposed method include: (a) the definition of a discrete surrogate material interface, (b) the computation of a reliable approximation of the fluid state vector on each side of a discrete material interface via the construction and solution of a local, exact, two-phase Riemann problem, (c) the algebraic solution of this auxiliary problem when the equation of state allows it, and (d) the solution of this two-phase Riemann problem using sparse grid tabulations otherwise. The proposed computational method is illustrated with the three-dimensional simulation of the dynamics of an underwater explosion bubble.  相似文献   
96.
97.
This article presents a study of the polymer‐filler interfacial effects on filler dispersion and mechanical reinforcement in Polystyrene (PS)/silica nanocomposites by direct comparison of two model systems: ungrafted and PS‐grafted silica dispersed in PS matrix. The structure of nanoparticles has been investigated by combining small angle neutron scattering measurements and transmission electronic microscopic images. The mechanical properties were studied over a wide range of deformation by plate–plate rheology and uni‐axial stretching. At low silica volume fraction, the particles arrange, for both systems, in small finite size nonconnected aggregates and the materials exhibit a solid‐like behavior independent of the local polymer‐fillers interactions suggesting that reinforcement is dominated by additional long range effects. At high silica volume fraction, a continuous connected network is created leading to a fast increase of reinforcement whose amplitude is then directly dependent on the strength of the local particle–particle interactions and lower with grafting likely due to deformation of grafted polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   
98.
Molecular pincers or tweezers are designed to hold and release the target molecule. Potential applications involve drug distribution in medicine, environment technologies, or microindustrial techniques. Typically, the binding is dominated by van der Waals forces. Modeling of such complexes can significantly enhance their design; yet obtaining accurate complexation energies by theory is difficult. In this study, density functional theory (DFT) computations combined with dielectric continuum solvent model are compared with the potential of mean force approach using umbrella sampling and the weighted histogram analysis method (WHAM) with molecular dynamics (MD) simulations. For DFT, functional and basis set effects are discussed. The computed results are compared to experimental data based on NMR spectroscopic measurements of five synthesized tweezers based on the Tröger's basis. Whereas the DFT computations correctly provided the observed trends in complex stability, they failed to produce realistic magnitudes of complexation energies. Typically, the binding was overestimated by DFT if compared to experiment. The simpler semiempirical PM6‐DH2X scheme proposed lately yielded better magnitudes of the binding energies than DFT but not the right order. The MD‐WHAM simulations provided the most realistic Gibbs binding energies, although the approximate MD force fields were not able to reproduce completely the ordering of relative stabilities of model complexes found by NMR. Yet the modeling provides interesting insight into the complex geometry and flexibility and appears as a useful tool in the tweezers' design. © 2012 Wiley Periodicals, Inc.  相似文献   
99.
Averaging of the chemical shift over the molecular motion improves the simulated data and provides additional information about the temperature dependence and system dynamics. However, crystal modeling is difficult due to the limited precision of the plane‐wave density functional theory (DFT) methods and approximate vibrational schemes. On the glycine example, we investigate how the averaging can be achieved within the periodic boundary conditions at the DFT level. The nuclear motion is modeled with the vibrational configuration interaction, with other simplified quantum anharmonic schemes, and the classical Born–Oppenheimer molecular dynamics (BOMD). The results confirm a large vibrational contribution to the isotropic shielding values. Both the first and second derivatives of the shielding were found important for the quantum averaging. The first derivatives influence the shielding mostly due to the anharmonic character of the CH and NH stretching modes, whereas second derivatives produce most vibrational corrections associated with the lower‐frequency vibrational modes. Temperature excitations of the lowest‐frequency vibrational states and the expansion of the crystal cell both determine the temperature dependence of nuclear magnetic resonance parameters. The vibrational quantum approach as well as classical BOMD schemes provided temperature dependencies of the chemical shifts that are consistent with the previous experimental data. © 2012 Wiley Periodicals, Inc.  相似文献   
100.
The Hg(2+) ion stabilizes the thymine-thymine mismatched base pair and provides new ways of creating various DNA structures. Recently, such T-Hg-T binding was detected by the Raman spectroscopy. In this work, detailed differences in vibrational frequencies and Raman intensity patterns in the free TpT dinucleotide and its metal-mediated complex (TpT·Hg)(2) are interpreted on the basis of quantum chemical modeling. The computations verified specific marker Raman bands indicating the effect of mercury binding to DNA. Although the B3LYP functional well-describes the Raman frequencies, a dispersion correction had to be added for all atoms including mercury to obtain realistic geometry of the (TpT·Hg)(2) dimer. Only then, the DFT complex structure agreed with those obtained with the wave function-based MP2 method. The aqueous solvent modeled as a polarizable continuum had a minor effect on the dispersion interaction, but it stabilized conformations of the sugar and phosphate parts. A generalized definition of internal coordinate force field was introduced to monitor covalent bond mechanical strengthening and weakening upon the Hg(2+) binding. Induced vibrational frequency shifts were rationalized in terms of changes in electronic structure. The simulations thus also provided reliable insight into the complex structure and stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号